Most of time when you search for CNTK's example, they are training and evaluating model using bulk data, but in some production field, we need evaluate one or few image from real time generated data, how does CNTK framework work on it? Let's find out.
通常你搜尋CNTK的範例,它們都在用大量資料訓練跟驗證模型,但是在一些實際使用情況下,我們需要評估即時產生的一張或幾張圖片時,CNTK框架可以表現得如何呢? 讓我們來看看。
I writed some example for compare evaluate performance between from C#/CNTK, Python/CNTK and Python/OpenCv+DNN, full solution put on github CNTK Evaluate Performance Test with detail description, so I will skip the code detail focus on others.
我寫了一些範例來比較C#/CNTK, Python/CNTK 跟 Python/OpenCv+DNN 之間的驗證效率,完整專案放在github上 CNTK Evaluate Performance Test 還有各種細節描述,所以我這邊就會跳過程式細節的部份來說其他的。
通常你搜尋CNTK的範例,它們都在用大量資料訓練跟驗證模型,但是在一些實際使用情況下,我們需要評估即時產生的一張或幾張圖片時,CNTK框架可以表現得如何呢? 讓我們來看看。
I writed some example for compare evaluate performance between from C#/CNTK, Python/CNTK and Python/OpenCv+DNN, full solution put on github CNTK Evaluate Performance Test with detail description, so I will skip the code detail focus on others.
我寫了一些範例來比較C#/CNTK, Python/CNTK 跟 Python/OpenCv+DNN 之間的驗證效率,完整專案放在github上 CNTK Evaluate Performance Test 還有各種細節描述,所以我這邊就會跳過程式細節的部份來說其他的。